Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

DANOPOL PVC WATERPROOFING SHEET

from

DANOSA

Programme:

Programme operator:

EPD registration number:

Publication date:

Revision date:

Valid until:

The International EPD® System, www.environdec.com

EPD International AB

S-P-00691

2015-05-18

2021-07-27

2026-07-25

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Programme information

Programme:	The International EPD® System					
	EPD International AB					
Address:	Box 210 60					
	SE-100 31 Stockholm					
	Sweden					
Website:	www.environdec.com					
E-mail:	info@environdec.com					

ISO standard – ISO 21930 and CEN standard EN 15804 serves as the Core Product Category Rules (PCR)
Product category rules (PCR): Construction Products, PCR 2019:14. Version 1.11.
PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact
Independent third-party verification of the declaration and data, according to ISO 14025:2006:
☐ EPD process certification ☒ EPD verification
Third party verifier:
TECNALIA R&I Certificación S.L. Auditor: Cristina Gazulla Santos Accredited by: ENAC. Accreditation no.125/C-PR283
Procedure for follow-up of data during EPD validity involves third party verifier:
⊠ Yes □ No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

Company information

Owner of the EPD: DANOSA

Contact: DANOSA ESPAÑA - +34 949 888 210 - info@danosa.com

<u>Description of the organisation:</u> DANOSA has an experience of more than four decades of work, during which DANOSA has developed a constant activity of improvement and diversification of their activity. Thanks to it, DANOSA satisfy the needs of the Building and Civil Engineering: Waterproofing, Acoustic Insulation, Drainages and Geotextiles and skylights. It also has quality and environmental certificates ISO 9001 and ISO 14001 respectively.

DANOSA considers that personal and business honesty is a core value of its internal relations with its suppliers, its customers and the environment, so it is committed to complying with the laws, rules a regulation that concern both the quality and the environment, and the other internal commitments made by the company itself. DANOSA manufactures its products always respecting the declares specifications and minimizing the environmental impacts associated with their activities, reducing, where possible, the amount of waste sent to sewage. DANOSA especially consider suppliers and subcontractors to achieve its objectives of Quality and environment, encouraging them to develop the bets practices creating a relationship of mutual collaboration.

DANOSA is committed to continuously improving the productivity of its facilities through the rational use of natural resources and energy, reducing, where possible, the waste generated by all operations and facilitating its recycling.

<u>Name and location of production site:</u> the declared section Danopol PVC Waterproofing Sheet are produced by DANOSA. The production plant is in:

• Poligono Industrial Sector 9 19290 FONTANAR (Guadalajara) Spain.

Product information

Product name: Danopol PVC Waterproofing Sheet of 1,2 mm, 1,5 mm, 1,8 mm of thickness.

<u>Product description</u>: Single ply plasticized PVC membrane, reinforced with different kind of carriers. Designed for flat roofs, tunnels, dams, reservoirs and buried structures waterproofing.

Danopol PVC Waterproofing Sheet are produced in different format:

- 1. DANOPOL 1.2 MM
 - DANOPOL HS 1.2 LIGHT GREY
 - DANOPOL + HS 1.2 DARK GREY ANTHRACITE
 - DANOPOL HS 1.2 COOL ROOFING
 - DANOPOL FV 1.2 LIGHT GREY
- 2. DANOPOL 1.5 MM
 - DANOPOL HS 1.5 LIGHT GREY
 - DANOPOL + HS 1.5 DARK GREY ANTHRACITE
 - DANOPOL HS 1.5 COOL ROOFING
 - DANOPOL FV 1.5 LIGHT GREY

- DANOPOL + FV 1.5 DARK GREY ANTHRACITE.
- DANOPOL HSF 1.5 LIGHT GREY
- DANOPOL + HSF 1.5 DARK GREY ANTHRACITE

3. DANOPOL 1.8 MM

- DANOPOL HS 1.8 LIGHT GREY
- DANOPOL + HS 1.8 DARK GREY ANTHRACITE
- DANOPOL HS 1.8 COOL ROOFING
- DANOPOL FV 1.8 LIGHT GREY
- DANOPOL + HSF 1.8 DARK GREY ANTHRACITE

The characteristics and differences of the references are described below:

- DANOPOL HS LIGHT GREY is a synthetic PVC plasticized membrane, reinforced with polyester net carrier. Designed for flat roof waterproofing, U.V. resistant.
- DANOPOL+ HS DARK GREY ANTHRACITE is a synthetic PVC plasticized membrane Dark grey, reinforced with polyester net carrier. Designed for flat roof waterproofing, U.V. resistant.
- DANOPOL HS COOL ROOFING is a synthetic PVC plasticized membrane white sheet, reinforced with polyester net carrier. Designed for flat roof waterproofing, U.V. resistant.
- DANOPOL FV LIGHT GREY is a synthetic PVC plasticized membrane, reinforced with fiberglass veil. Designed for flat roof waterproofing, U.V. resistant.
- DANOPOL+ FV DARK GREY ANTHRACITE is a synthetic PVC plasticized membrane Dark grey, reinforced with fiberglass veil. Designed for flat roof waterproofing, U.V. resistant.
- DANOPOL HSF LIGHT GREY is a synthetic PVC plasticized membrane, reinforced with polyester net carrier, and a 300gr geotextile fleece backing. It has an overlap without geotextile of 6 cm, on the right longitudinal zone, allowing overlaying and welding to the adjacent sheet. Designed for flat roof waterproofing, U.V. resistant.
- DANOPOL+ HSF DARK GREY ANTHRACITE is a synthetic PVC plasticized membrane, reinforced with polyester net carrier, and a 300gr geotextile fleece backing. It has an overlap without geotextile of 6 cm, on the right longitudinal zone, allowing overlaying and welding to the adjacent sheet. Designed for flat roof waterproofing, U.V. resistant.

More information about the product is available at: www.danosa.com

UN CPC code: 547 Building completion and finishing services

LCA information

<u>Declared unit:</u> 1 m2 of PVC DANOPOL waterproofing sheet with a weight per reference as shown in the table below

Referencias	Kg/m2
DANOPOL HS 1.2 LIGHT GREY	1,58
DANOPOL + HS 1.2 DARK GREY ANTHRACITE	1,58
DANOPOL HS 1.2 COOL ROOFING	1,66
DANOPOL FV 1.2 LIGHT GREY	1,55

DANOPOL HS 1.5 LIGHT GREY	1,97
DANOPOL + HS 1.5 DARK GREY ANTHRACITE	1,98
DANOPOL HS 1.5COOL ROOFING	2,08
DANOPOL FV 1.5 LIGHT GREY	1,94
DANOPOL + FV 1.5 DARK GREY ANTHRACITE	1,95
DANOPOL HSF 1.5 LIGHT GREY	2,13
DANOPOL + HSF 1.5 DARK GREY ANTHRACITE	2,13
DANOPOL HS 1.8 LIGHT GREY	2,35
DANOPOL + HS 1.8 DARK GREY ANTHRACITE	2,36
DANOPOL HS 1.8 COOL ROOFING	2,48
DANOPOL FV 1.8 LIGHT GREY	2,33
DANOPOL + HSF 1.8 DARK GREY ANTHRACITE	2,51
DANOPOL HS 1.8 LIGHT GREY DANOPOL + HS 1.8 DARK GREY ANTHRACITE DANOPOL HS 1.8 COOL ROOFING DANOPOL FV 1.8 LIGHT GREY	2,35 2,36 2,48 2,33

Reference service life: 35 years – According to British Board of Agrément (BBA) – Approval Inspection Testing Certification.

<u>Time representativeness:</u> primary data from manufacturing site refer to year 2019, and residual electricity mix from Spain in 2018¹

<u>Database(s)</u> and <u>LCA</u> software used: Ecoinvent v3.5 (allocation, cut-off by classification) database and SimaPro 9.1 software have been used for the LCA calculations. LCA methods used are EN 15804:A2 compliant.

Description of system boundaries:

Cradle to grave and module D(A+B+C+D). The modularity and the polluter payer principles have been followed. The next processes have been excluded:

- Flows related to human activities such as employee transport
- The construction of plants, production of machines and transportation systems, as well as maintenance activities.

A1. Raw Material Supply

- Extraction and processing of raw materials (glass veil, polyester mesh, polymer, plasticizer and additives)
- Generation of electricity and heat from primary energy resources
- Processing up to the end-of-waste state or disposal of final residues including any packaging not leaving the factory gate with the product.

DANOPOL's manufacturing process is based on the continuous production of PVC sheets and consists of several stages, such as raw material supply, PVC grouser drying, line supply, PVC extrusion, product forming, cooling, thickness control, shaping and marking, accumulation area, coiler, palletizing and storage.

A2. Transportation

• External transportation to the core processes and internal transport.

¹ https://www.aib-net.org/sites/default/files/assets/facts/residual-mix/2018/AIB_2018_Residual_Mix_Results_v1_1.pdf

A3. Manufacturing

- Manufacturing of the construction product and co-products. Synthetic film based on plasticized PVC, manufactured by calendering and supported with different types of reinforcement.
- Production of ancillary materials or pre-products.
- Treatment of waste generated from the manufacturing processes. Processing up to the end-ofwaste state or disposal of final residues including any packaging not leaving the factory gate with the product.

A4. Transport

• Transportation from the production gate to the construction site

SCENARIO INFORMATION	VALUE/DESCRIPTION		
Vehicle type used for transport	Long distance truck		
	Transoceanic cargo ship		
Vehicle load capacity	Truck: 32 tones		
Fuel type and consumption			
	Truck:31,1L/100 km		
	Cargo ship:0,0014L/100 TnKm		
Distance to construction site	Truck: 1168 km		
	Cargo ship: 292km		
Capacity utilisation (including empty	>95%		
returns)			
Bulk density of transported products	2,04 Kg/m2 (including packaging)		
Volume capacity utilisation factor	1		

A5. Construction Installation:

The product is directly transferred from the truck to the construction site.

SCENARIO INFORMATION	VALUE/DESCRIPTION		
Ancillary materials for installation	Not required		
Water use	Not used		
Other resource use	Not required		
Quantitative description of the energy			
type and consumption during the	Not used		
preparation and installation process			
Direct emissions to ambient air, soil and	No generation		
water			
Waste materials on the building site,	Product losses: 5%		
generated by the product's installation	Floduct losses. 5%		
Output materials as result of waste	Scraps of product: 100% landfill		
processing at the construction site	Packaging: 50% landfill and 50% incineration		
processing at the construction site			

B1 - B7. During the stage of use of the products under study (35 years), no material use or energy consumption is required.

C1. Deconstruction/demolition

• The demolition was considered to be without material separation. The impact of the demolition of Danopol PVC Waterproofing Sheet is considered negligible compared to the impact of the demolition of the building as a whole. Therefore, the impact is considered 0.

C2. Transport

• Transportation of the discarded product accounts for part of the waste processing, e.g. to a recycling site and transportation of waste.

C3. Waste processing for reuse, recovery and/or recycling

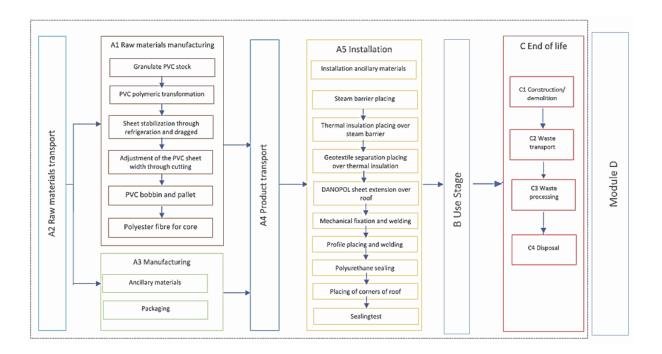
• It is considered that there is no recycling or reuse at the end of the product's life, because during the demolition of buildings there is no selective separation of materials in the vast majority of cases. Consequently, the impact is considered 0.

C4. Disposal

• Waste disposal including physical pre-treatment and management of the disposal site. Emissions from waste disposal are considered part of the product system under study and therefore part of this module, according to the "polluter pays principle".

SCENARIO INFORMATION	VALUE/DESCRIPTION		
Collection process specified by type	0 Kg collected individually		
	2,18kg collected with mixed construction waste		
Recovery system specified by type	0 Kg intended for reuse		
	0 Kg intended for recycling		
	0 Kg intended for energy recovery		
Disposal specified by type	2,18 Kg to authotized landfill		
Assumptions for scenario development	Lorry of the size class 16-32 metric tons gross		
(e.g. transport)	and Euro VI emissions class		
	Average load: 5,79 tones		
	Diesel Fuel consumption: 25,5 l/100 Km		
	Distance: 50 km		

Scenarios included in A4-A5 and C1-C4 are currently in use and are representative for one of the most probable alternatives.


D. Reuse-recovery-recycling potential

This product has not considerable benefits due to recycling or/and reuse.

System diagram:

More information:

- The underlying LCA study has been carried out by Marcel Gomez Consultoría Ambiental
- The study covers at least 95% of the materials and energy per module and at least 99% of the total use of materials and energy of each unit process.
- More information about the product is available at: www.danosa.es

Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation:

	Prod	luct sta	age	-ct prod	istru ion cess age	Use stage End of life stage			Resource recovery stage								
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Modules declared	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Geography	ES	ES	ES	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU
Specific data		>90% G	WP-G	HG		-	-	-	-	-	-	-	-	-	-	-	
Variation – products	Variation of the impact products declared< 10% - for each product group			-	-	-	-	-	-	-	-	-	-	-	-		

Content information declared unit

DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE.

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%			
Glass veil	0	0	0			
Polyester mesh	0,05 - 0,1	0 0				
Polymer	0, 500- 0,800	0	0			
Plasticizer	0,300-0,600	0	0			
Additives	0,300-0,600	0 0				
Packaging materials	Weight, kg	Weight-% (versus the product)				
Wooden pallets	0,00000277					
Film PE	0,003	<12%				
Foam base	0,0014	1,2,0				

HS 1.2 COOL ROOFING

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%			
Glass veil	0	0	0			
Polyester mesh	0,05 - 0,1	0 0				
Polymer	0, 500- 0,800	0	0			
Plasticizer	0,300-0,600	0	0			
Additives	0,300-0,600	0 0				
Packaging materials	Weight, kg	Weight-% (versus the product)				
Wooden pallets	0,00000277					
Film PE	0,003	<10%				
Foam base	0,0014					

DANOPOL FV 1.2 LIGHT GREY

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Glass veil	0,020 - 0,050	20%	0
Polyester mesh	0,05 - 0,1	0	0
Polymer	0, 500- 0,800	0	0
Plasticizer	0,300-0,600	0	0

Additives	0,300-0,600	0	0				
Packaging materials	Weight, kg	Weight-% (versus the product)					
Wooden pallets	0,00000277						
Film PE	0,003	<6%					
Foam base	0,0014	107					

DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%					
Glass veil	0	0	0					
Polyester mesh	0,05 - 0,1	0	0					
Polymer	0,800- 1	0	0					
Plasticizer	0,500 - 0,700	0	0					
Additives	0,300-0,600	0	0					
Packaging materials	Weight, kg	Weight-% (versu	s the product)					
Wooden pallets	0,00000366							
Film PE	0,004	<12	%					
Foam base	0,0019							

DANOPOL HS 1.5 COOL ROOFING

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%				
Glass veil	0	0	0				
Polyester mesh	0,05 - 0,1	0	0				
Polymer	0,800- 1	0	0				
Plasticizer	0,500 - 0,700	0	0				
Additives	0,300-0,600	0	0				
Packaging materials	Weight, kg	Weight-% (versu	s the product)				
Wooden pallets	0,00000366	-120)/				
Film PE	0,004	<12%					
Foam base	0,0019						

DANOPOL FV 1.5 LIGHT GREY and DANOPOL + FV 1.5 DARK GREY ANTHRACITE.

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Glass veil	0,020 - 0,050	20%	0
Polyester mesh	0,05 - 0,1	0	0
Polymer	0,800- 1	0	0
Plasticizer	0,500 - 0,700	0	0
Additives	0,300-0,600	0	0
Packaging materials	Weight, kg	Weight-% (versu	s the product)
Wooden pallets	0,00000366	00	,
Film PE	0,004	<6%	⁄o
Foam base	0,0019		

DANOPOL HSF 1.5 LIGHT GREY and DANOPOL + HSF 1.5 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Glass veil	0	0	0
Geotextile	0,1-0,2	0	0
Polyester mesh	0,05 - 0,1	0	0
Polymer	0,800- 1	0	0
Plasticizer	0,500 - 0,700	0	0
Additives	0,300-0,600	0	0
Packaging materials	Weight, kg	Weight-% (versu	s the product)
Wooden pallets	0,0000053		
Film PE	0,006	<129	%
Roll protector	0,051		

DANOPOL HS 1.8 LIGHT GREY and DANOPOL + HS 1.8 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Glass veil	0	0	0
Polyester mesh	0,05 - 0,1	0	0
Polymer	0,800- 1,2	0	0

Plasticizer	0,500 - 0,800	0	0					
Additives	0,300-0,600	0	0					
Dooksaina metariala	Weight,	Weight-% (versus the product)						
Packaging materials	kg	weight-% (versu	is the product)					
Wooden pallets								
	kg	weight-% (versu						

DANOPOL HS 1.8 COOL ROOFING

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Glass veil	0	0	0
Polyester mesh	0,05 - 0,1	0	0
Polymer	0,800- 1,2	0	0
Plasticizer	0,500 - 0,800	0	0
Additives	0,300-0,600	0	0
Packaging materials	Weight, kg	Weight-% (versu	s the product)
Wooden pallets	0,000004245		
Film PE	0,005	<129	%
Foam base	0,0021		

DANOPOL FV 1.8 LIGHT GREY

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%				
Glass veil	0,020 - 0,050	20%	0				
Polyester mesh	0,05 - 0,1	0	0				
Polymer	0,800- 1,2	0	0				
Plasticizer	0,500 - 0,800	0	0				
Additives	0,300-0,600	0	0				
Packaging materials	Weight, kg	Weight-% (versu	s the product)				
Wooden pallets	0,000004245						
Film PE	0,005	<6%					
Foam base	0,0021						

DANOPOL + HSF 1.8 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%					
Glass veil	0	0	0					
Geotextile	0,15-0,20	0	0					
Polyester mesh	0,05 - 0,1	0	0					
Polymer	1,4 - 1,6	0	0					
Plasticizer	0,800- 1	0	0					
Additives	0,300-0,600	0	0					
Packaging materials	Weight, kg	Weight-% (versu	is the product)					
Wooden pallets	0,00000609							
Film PE	0,006	<12%						
Roll protector	0,059							

During the life cycle of the products no hazardous substance listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorization" has been used in a percentage higher than 0.1% of the weight of the product.

Environmental Information

Since the difference in environmental impact is less than 10% for DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE and HS 1.2 Cool Roofing the following information is valid for the EPD results.

DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE - HS 1.2 COOL ROOFING

Potential environmental impact – mandatory indicators according to EN 15804

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

				Results	per d	eclare	d unit									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	4,38E+0 0	2,10E- 01	1,38E- 01	0	0	0	0	0	0	0	0	5,74 E-03	0	9,11 E-03	
WP-biogenic	kg CO ₂ eq.	6,32E- 03	7,18E- 05	1,94E- 04	0	0	0	0	0	0	0	0	1,91 E-06	0	7,75 E-06	
GWP- luluc	kg CO ₂ eq.	1,69E- 03	5,45E- 05	7,95E- 05	0	0	0	0	0	0	0	0	1,44 E-06	0	1,48 E-06	
GWP- total	kg CO ₂ eq.	4,39E+0 0	2,10E- 01	1,38E- 01	0	0	0	0	0	0	0	0	5,74 E-03	0	9,11 E-03	
ODP	kg CFC 11 eq.	2,24E- 07	4,99E- 08	9,17E- 09	0	0	0	0	0	0	0	0	1,37 E-09	0	4,52 E-09	
АР	mol H ⁺ eq.	2,51E- 02	1,02E- 03	8,35E- 04	0	0	0	0	0	0	0	0	2,42 E-05	0	8,97 E-05	
:P-freshwater	kg PO4eq	2,87E- 04	8,45E- 06	1,79E- 05	0	0	0	0	0	0	0	0	2,29 E-07	0	3,63 E-07	
	kg P eq	9,36E- 05	2,75E- 06	5,82E- 06	0	0	0	0	0	0	0	0	7,46 E-08	0	1,18 E-07	
EP- marine	kg N eq.	3,63E- 03	2,82E- 04	1,37E- 04	0	0	0	0	0	0	0	0	7,05 E-06	0	3,26 E-05	
EP-terrestrial	mol N eq.	4,38E- 02	3,15E- 03	1,67E- 03	0	0	0	0	0	0	0	0	7,88 E-05	0	3,63 E-04	
POCP	kg NMVO C eq.	2,77E- 02	9,86E- 04	6,60E- 04	0	0	0	0	0	0	0	0	2,51 E-05	0	1,03 E-04	
ADP- inerals&meta Is*	kg Sb eq.	5,35E- 06	3,80E- 07	2,38E- 06	0	0	0	0	0	0	0	0	1,07 E-08	0	9,73 E-09	
ADP-fossil*	MJ	9,62E+0 1	3,32E+0 0	2,29E+0 0	0	0	0	0	0	0	0	0	9,10 E-02	0	3,01 E-01	
WDP	m³	9,00E+0 0	2,45E- 02	1,20E- 01	0	0	0	0	0	0	0	0	6,75 E-04	0	1,27 E-03	
Acronyms	Global V = Ac reachin comp	ossil = Globa Varming Pote idification po g freshwater partment; EP pheric ozone pletion for fo	ential land u tential, Accu end compa -terrestrial = e; ADP-mine	se and land umulated Ex artment; EP-i = Eutrophica erals&metals	use cheda ceeda marine tion po = Abi	nange; nce; E e = Eu otentia otic de	ODP P-frestrophic I, Accu	= Dep shwate cation umulat n pote	oletion er = Eu potent ted Ex ntial fo	poter atrophi tial, fra ceeda or non	tial of cation action ince; F -fossil	the str poten of nutr POCP resou	ratospher tial, fracti ients read = Format rces; ADF	ic ozor on of r ching r ion por P-fossi	ne layer; nutrients marine er tential of I = Abioti	Al nd

Potential environmental impact – additional mandatory and voluntary indicators

Results per declared unit																
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
GWP- GHG ²	kg CO ₂ eq.	4,27E+ 00	2,08E- 01	1,35E- 01	0	0	0	0	0	0	0	0	5,69E- 03	0	8,97E- 03	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

				Re	esults p	oer fun	ctional	unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
PERE	MJ	4,75E+00	3,63E-02	2,80E-01	0	0	0	0	0	0	0	0	9,63E- 04	0	3,95E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	4,75E+00	3,63E-02	2,80E-01	0	0	0	0	0	0	0	0	9,63E- 04	0	3,95E- 03	0
PENRE	MJ	9,62E+01	3,32E+00	2,29E+00	0	0	0	0	0	0	0	0	9,10E- 02	0	3,01E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	9,62E+01	3,32E+00	2,29E+00	0	0	0	0	0	0	0	0	9,10E- 02	0	3,01E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	5,34E+00	1,77E-01	2,35E+00	0	0	0	0	0	0	0	0	4,68E- 03	0	1,75E- 02	0
Acronyms	of PEI PE	E = Use of ren renewable prin NRE = Use of ENRM = Use on nary energy re	mary energy r non-renewab of non-renewa	resources use le primary en able primary e	ed as r ergy e energy condar	aw ma xcludin resour y mate	terials; ig non- ces us rial; RS	; PERT renew sed as SF = U	= Tot able p raw m se of r	al use rimary aterials enewa	of rene energy s; PEN ble se	ewable y resou IRT = ⁻ condai	primary e urces used Total use d	nergy l as rav of non-	resources w materials renewable	; s;

² The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

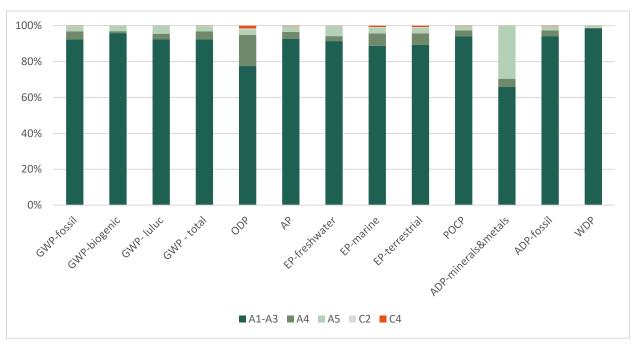
Waste production

					_											
					Re	sults p	er func	tional i	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2,21E-05	1,92E- 06	2,66 E-06	0	0	0	0	0	0	0	0	5,27E-08	0	1,03E-07	0
Non- hazardous waste disposed	kg	4,48E-01	2,75E- 01	1,30 E-01	0	0	0	0	0	0	0	0	7,74E-03	0	2,11E+00	0
Radioactive waste disposed	kg	9,94E-05	2,25E- 05	6,41 E-06	0	0	0	0	0	0	0	0	6,18E-07	0	2,06E-06	0

Output flows

						Resul	ts per fun	ctional u	nit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	2,77 E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	4,40E+0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content


Results p	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0
Biogenic carbon content in packaging	kg C	2,77E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 89,6%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 4,7% and 5,1% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,4% respectively of the whole impact. The life cycle has an impact of 4,75 kg of CO2 equivalent.

Results on impact categories

Environmental Information

DANOPOL FV 1.2 LIGHT GREY

Potential environmental impact – mandatory indicators according to EN 15804

			ı	Results per o	decla	red ι	ınit									
Indicator	Unit	Tot.A1-A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C1	C2	С3	C4	D
GWP-fossil	kg CO ₂ eq.	3,97E+00	2,03E-01	1,31E- 01	0	0	0	0	0	0	0	0	5,56 E-03	0	8,82E- 03	0
GWP-biogenic	kg CO ₂ eq.	5,80E-03	6,94E-05	1,89E- 04	0	0	0	0	0	0	0	0	1,86 E-06	0	7,51E- 06	0
GWP- luluc	kg CO ₂ eq.	1,46E-03	5,27E-05	7,64E- 05	0	0	0	0	0	0	0	0	1,40 E-06	0	1,43E- 06	0
GWP- total	kg CO ₂ eq.	3,97E+00	2,03E-01	1,31E- 01	0	0	0	0	0	0	0	0	5,56 E-03	0	8,83E- 03	0
ODP	kg CFC 11 eq.	1,66E-07	4,83E-08	8,29E- 09	0	0	0	0	0	0	0	0	1,33 E-09	0	4,38E- 09	0
АР	mol H ⁺ eq.	2,39E-02	9,86E-04	8,07E- 04	0	0	0	0	0	0	0	0	2,34 E-05	0	8,69E- 05	0
EP-freshwater	kg PO ₄ eq.	2,20E-04	8,17E-06	1,70E- 05	0	0	0	0	0	0	0	0	2,22 E-07	0	3,50E- 07	0
	kg P eq	7,16E-05	2,66E-06	5,55E- 06	0	0	0	0	0	0	0	0	7,23 E-08	0	1,14E- 07	0
EP- marine	kg N eq.	3,47E-03	2,73E-04	1,32E- 04	0	0	0	0	0	0	0	0	6,83 E-06	0	3,15E- 05	0
EP-terrestrial	mol N eq.	4,18E-02	3,05E-03	1,62E- 03	0	0	0	0	0	0	0	0	7,63 E-05	0	3,52E- 04	0
РОСР	kg NMVOC eq.	2,73E-02	9,53E-04	6,38E- 04	0	0	0	0	0	0	0	0	2,44 E-05	0	1,00E- 04	0
ADP- ninerals&metals*	kg Sb eq.	3,92E-06	3,67E-07	2,36E- 06	0	0	0	0	0	0	0	0	1,03 E-08	0	9,43E- 09	0
ADP-fossil*	MJ	9,03E+01	3,21E+00	2,17E+0 0	0	0	0	0	0	0	0	0	8,82 E-02	0	2,92E- 01	0
WDP	m³	9,01E+00	2,37E-02	1,16E- 01	0	0	0	0	0	0	0	0	6,54 E-04	0	1,23E- 03	0
Acronyms	Warming F potentia compart Eutrophica	ssil = Global Wa Potential land u I, Accumulated ment; EP-marii tion potential, A epletion potenti	se and land us Exceedance; ne = Eutrophic Accumulated E ial for non-foss	se change; C EP-freshwat ation potenti xceedance;	DP = er = al, fra POC ADF	Eutro Eutro action P = P	oletic ophic n of r Form sil = .	on po ation nutrie ation Abio	tenti pote ents i pot tic de	al of entia reach entia epleti	the soling in th	stratospotion of marine ropospor fossi	oheric ozo f nutrients end com heric ozo I resource	one laye reachir partmer ne; ADF	r; AP = Aci ng freshwa nt; EP-terre P-minerals&	dificati ter end strial = &metal:

PAGE 19/49

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	eclared	d unit								
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
GWP- GHG ³	kg CO ₂ eq.	3,86E+00	2,01E- 01	1,28E- 01	0	0	0	0	0	0	0	0	5,51E-03	0	8,69E- 03	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					Re	esults p	er fund	tional ı	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	4,48E+00	3,51E- 02	2,76E -01	0	0	0	0	0	0	0	0	9,33E- 04	0	3,82E-03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	4,48E+00	3,51E- 02	2,76E -01	0	0	0	0	0	0	0	0	9,33E- 04	0	3,82E-03	0
PENRE	MJ	9,03E+01	3,21E+ 00	2,17E +00	0	0	0	0	0	0	0	0	8,82E- 02	0	2,92E-01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	9,03E+0	3,21E+ 00	2,17E +00	0	0	0	0	0	0	0	0	8,82E- 02	0	2,92E-01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	4,42E+00	1,71E- 01	2,33E +00	0	0	0	0	0	0	0	0	4,54E- 03	0	1,70E-02	0

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources: penke = Use of non-renewable primary energy resources; penke = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; penke = Use of non-renewable primary energy resources used as raw materials; penker = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

³ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

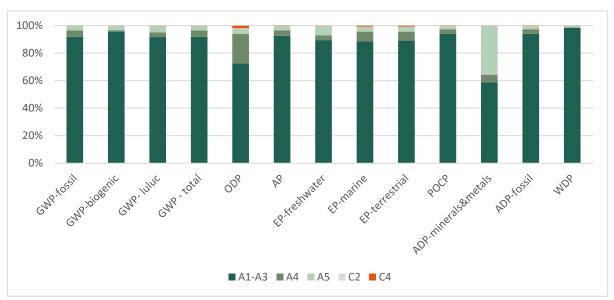
Waste production

					Re	esults p	er func	tional ı	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	5,75E-06	1,86E- 06	2,59E -06	0	0	0	0	0	0	0	0	5,11E-08	0	9,97E-08	0
Non- hazardous waste disposed	kg	1,88E-01	2,65E- 01	1,28E -01	0	0	0	0	0	0	0	0	7,49E-03	0	2,04E+00	0
Radioactive waste disposed	kg	5,43E-05	2,18E- 05	6,17E -06	0	0	0	0	0	0	0	0	5,99E-07	0	2,00E-06	0

Output flows

						Resul	ts per fur	ctional u	nit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
Components for re-use	kg	0	0	1,75 E- 01	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,50E- 06	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content


Results p	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0
Biogenic carbon content in packaging	kg C	2,77E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 88,4%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 5,2% and 5,8% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,4% respectively of the whole impact. The life cycle has an impact of 4,32 kg of CO2 equivalent.

Results on impact categories

Environmental Information

Since the difference in environmental impact is less than 10% for DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE - HS 1.5 COOL ROOFING the following information is valid for the EPD results

DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE -**HS 1.5 COOL ROOFING**

Potential environmental impact – mandatory indicators according to EN 15804

			1	Results per o	decla	red ι	ınit									
Indicator	Unit	Tot.A1-A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C1	C2	C3	C4	D
GWP-fossil	kg CO ₂ eq.	5,37E+00	2,60E-01	1,46E- 01	0	0	0	0	0	0	0	0	7,77 E-03	0	1,23E- 02	0
GWP-biogenic	kg CO ₂ eq.	7,75E-03	8,88E-05	2,03E- 04	0	0	0	0	0	0	0	0	2,59 E-06	0	1,05E- 05	0
GWP- luluc	kg CO ₂ eq.	2,05E-03	6,75E-05	8,21E- 05	0	0	0	0	0	0	0	0	1,95 E-06	0	2,00E- 06	0
GWP- total	kg CO ₂ eq.	5,38E+00	2,60E-01	1,46E- 01	0	0	0	0	0	0	0	0	7,78 E-03	0	1,23E- 02	0
ODP	kg CFC 11 eq.	2,64E-07	6,18E-08	9,59E- 09	0	0	0	0	0	0	0	0	1,86 E-09	0	6,12E- 09	0
АР	mol H ⁺ eq.	3,10E-02	1,26E-03	8,74E- 04	0	0	0	0	0	0	0	0	3,28 E-05	0	1,21E- 04	C
EP-freshwater	kg PO4 eq.	3,40E-04	1,05E-05	1,81E- 05	0	0	0	0	0	0	0	0	3,10 E-07	0	4,91E- 07	O
	kg P eq	1,11E-04	3,41E-06	5,90E- 06	0	0	0	0	0	0	0	0	1,01 E-07	0	1,60E- 07	C
EP- marine	kg N eq.	4,49E-03	3,49E-04	1,44E- 04	0	0	0	0	0	0	0	0	9,55 E-06	0	4,41E- 05	C
EP-terrestrial	mol N eq.	5,40E-02	3,90E-03	1,76E- 03	0	0	0	0	0	0	0	0	1,07 E-04	0	4,92E- 04	0
РОСР	kg NMVOC eq.	3,46E-02	1,22E-03	7,13E- 04	0	0	0	0	0	0	0	0	3,40 E-05	0	1,40E- 04	C
ADP- inerals&metals*	kg Sb eq.	6,26E-06	4,70E-07	2,38E- 06	0	0	0	0	0	0	0	0	1,44 E-08	0	1,32E- 08	C
ADP-fossil*	MJ	1,19E+02	4,11E+00	2,47E+0 0	0	0	0	0	0	0	0	0	1,23 E-01	0	4,08E- 01	C
WDP	m ³	1,13E+01	3,04E-02	1,39E- 01	0	0	0	0	0	0	0	0	9,14 E-04	0	1,72E- 03	C
Acronyms	Warming F potentia compart	sil = Global Wa Potential land u I, Accumulated ment; EP-marii ation potential,	se and land us Exceedance; ne = Eutrophic	e change; C EP-freshwat ation potenti	DP = er = I al, fra	Dep Eutro action	oletic ophic of r	n po ation	tenti pote ents i	al of entia reacl	the s I, fra hing	stratos; ction o marine	oheric ozo f nutrients end com	one laye reachir partmer	er; AP = Ac ng freshwa nt; EP-terre	idificat ter end strial :

(user) deprivation potential, deprivation-weighted water consumption

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	eclared	d unit								
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
GWP- GHG⁴	kg CO ₂ eq.	5,22E+00	2,57E- 01	1,43E- 01	0	0	0	0	0	0	0	0	7,70E-03	0	1,22E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					R	esults p	er fun	ctional	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	6,07E+00	4,49E- 02	2,84E -01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E-03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	6,07E+00	4,49E- 02	2,84E -01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E-03	0
PENRE	MJ	1,19E+02	4,11E+ 00	2,50E +00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E-01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,19E+02	4,11E+ 00	2,50E +00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E-01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m³	6,36E+00	2,19E- 01	2,35E +00	0	0	0	0	0	0	0	0	6,34E- 03	0	2,37E-02	0
cronyms	renewa	RE = Use of rer able primary end n-renewable prir able primary end	ergy resour mary energ	ces used y excludir	as raw	mater renew	ials; PE able pr	$RT = \frac{1}{2}$ imary 6	Fotal us energy	se of re	newab	le prima ed as ra	ary energy w materials	resourd s; PENI	ces; PENRE RM = Use of	= Use f non-

of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

⁴ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

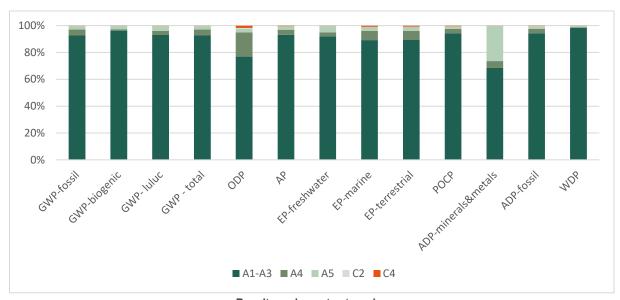
Waste production

					Re	esults p	er func	tional	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2,61E-05	2,38E- 06	2,69E -06	0	0	0	0	0	0	0	0	7,14E-08	0	1,39E-07	0
Non- hazardous waste disposed	kg	5,49E-01	3,40E- 01	1,39E -01	0	0	0	0	0	0	0	0	7,80E-06	0	1,05E-05	0
Radioactive waste disposed	kg	1,21E-04	2,79E- 05	6,62E -06	0	0	0	0	0	0	0	0	8,38E-07	0	2,79E-06	0

Output flows

						Resul	ts per fur	ctional u	nit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	3,66 E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	5,90E+0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content


Results p	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0
Biogenic carbon content in packaging	kg C	3,66E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 90,08% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 4,86% and 4,50% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,14% and 0,42% respectively of the whole impact. The life cycle has an impact of 5,81 kg of CO2 equivalent.

Results on impact categories

Environmental Information

DANOPOL FV 1.5 LIGHT GREY and DANOPOL + FV 1.5 DARK GREY ANTHRACITE. Potential environmental impact – mandatory indicators according to EN 15804

				Results	per c	lecla	ared	unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C1	C2	СЗ	C4	
GWP-fossil	kg CO ₂ eq.	4,86E+0 0	2,53E- 01	1,31E- 01	0	0	0	0	0	0	0	0	7,59E-03	0	1,20E- 02	
GWP-biogenic	kg CO ₂ eq.	7,09E-03	8,64E- 05	1,89E- 04	0	0	0	0	0	0	0	0	2,53E-06	0	1,03E- 05	
GWP- luluc	kg CO ₂ eq.	1,77E-03	6,57E- 05	7,64E- 05	0	0	0	0	0	0	0	0	1,91E-06	0	1,95E- 06	
GWP- total	kg CO ₂ eq.	4,87E+0 0	2,53E- 01	1,31E- 01	0	0	0	0	0	0	0	0	7,60E-03	0	1,21E- 02	
ODP	kg CFC 11 eq.	1,99E-07	6,01E- 08	8,28E- 09	0	0	0	0	0	0	0	0	1,82E-09	0	5,98E- 09	
АР	mol H ⁺ eq.	2,96E-02	1,23E- 03	8,07E- 04	0	0	0	0	0	0	0	0	3,20E-05	0	1,19E- 04	
EP-freshwater	kg PO ₄ eq.	2,56E-04	1,02E- 05	1,70E- 05	0	0	0	0	0	0	0	0	3,03E-07	0	4,80E- 07	
	kg P eq	8,34E-05	3,32E- 06	5,55E- 06	0	0	0	0	0	0	0	0	9,87E-08	0	1,56E- 07	
EP- marine	kg N eq.	4,28E-03	3,39E- 04	1,32E- 04	0	0	0	0	0	0	0	0	9,33E-06	0	4,31E- 05	
EP-terrestrial	mol N eq.	5,15E-02	3,80E- 03	1,62E- 03	0	0	0	0	0	0	0	0	1,04E-04	0	4,81E- 04	
POCP	kg NMVO C eq.	3,40E-02	1,19E- 03	6,38E- 04	0	0	0	0	0	0	0	0	3,33E-05	0	1,37E- 04	
ADP- nerals&metals*	kg Sb eq.	4,38E-06	4,57E- 07	2,36E- 06	0	0	0	0	0	0	0	0	1,41E-08	0	1,29E- 08	
ADP-fossil*	MJ	1,12E+0 2	4,00E+0 0	2,17E +00	0	0	0	0	0	0	0	0	1,20E-01	0	3,98E- 01	
WDP	m ³	1,13E+0 1	2,95E- 02	1,16E- 01	0	0	0	0	0	0	0	0	8,93E-04	0	1,68E- 03	
Acronyms	Global W = Aci reaching	arming Poter dification pote g freshwater	ntial land use ential, Accun end compart	e and land nulated Ex ment; EP-	use ceed mari	cha dand ne =	nge; e; E = Eut	OD P-fr ropl	P = esh hica	Dep wate tion	oletic er = pote	on poten Eutrophi ential, fra	irming Potentia itial of the strate ication potentia action of nutrier ince; POCP = I	ospheric I, fraction ts reach	ozone layen of nutrier ning marine	er; nts e en

tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil consumption

Potential environmental impact - additional mandatory and voluntary indicators

					Result	s per d	eclared	d unit								
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
GWP- GHG⁵	kg CO ₂ eq.	4,74E+00	2,51E-01	1,28E-01	0	0	0	0	0	0	0	0	7,53E-03	0	1,19E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

ndicator U	Jnit	Tot.A1-A3	A4	A5												
			^7	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE N	MJ	5,70E+00	4,37E- 02	2,76E -01	0	0	0	0	0	0	0	0	1,27E- 03	0	5,22E-03	0
PERM N	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT N	MJ	5,70E+00	4,37E- 02	2,76E -01	0	0	0	0	0	0	0	0	1,27E- 03	0	5,22E-03	0
PENRE N	MJ	1,12E+02	4,00E+ 00	2,17E +00	0	0	0	0	0	0	0	0	1,20E- 01	0	3,98E-01	0
PENRM N	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT N	MJ	1,12E+02	4,00E+ 00	2,17E +00	0	0	0	0	0	0	0	0	1,20E- 01	0	3,98E-01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF N	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF N	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW r	m³	5,05E+00	2,13E- 01	2,33E +00	0	0	0	0	0	0	0	0	6,30E- 03	0	2,32E-02	0

renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh

⁵ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

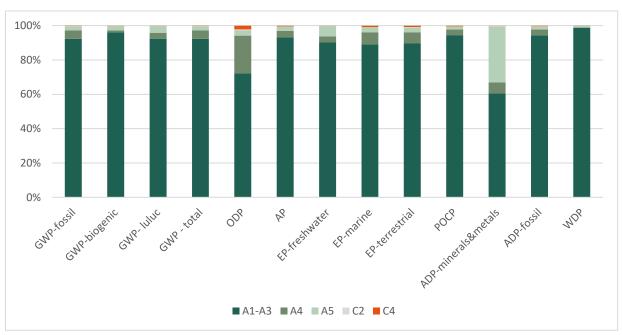
Waste production

The state of the s					Re	esults p	er func	tional ı	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	В2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2,02E-05	2,32E- 06	2,59E -06	0	0	0	0	0	0	0	0	6,97E-08	0	1,36E-07	0
Non- hazardous waste disposed	kg	5,22E-01	3,31E- 01	1,28E -01	0	0	0	0	0	0	0	0	1,02E-02	0	2,79E+00	0
Radioactive waste disposed	kg	1,09E-04	2,71E- 05	6,17E -06	0	0	0	0	0	0	0	0	8,18E-07	0	2,73E-06	0

Output flows

Output now																
					R	esults	per fui	nctiona	ıl unit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0	0	3,66 E-03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	5,90E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	МЈ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	МЈ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content


Results po	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0
Biogenic carbon content in packaging	kg C	3,66E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 88,9% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 5,4% and 5,0% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,2% and 0,5% respectively of the whole impact. The life cycle has an impact of 5,27 kg of CO2 equivalent.

Results on impact categories

Environmental Information

Since the difference in environmental impact is less than 10% for DANOPOL HSF 1.5 Light Grey - DANOPOL + HSF 1.5 DARK GREY ANTHRACITE the following information is valid for the EPD results

DANOPOL HSF 1.5 Light Grey - DANOPOL + HSF 1.5 DARK GREY ANTHRACITE Potential environmental impact – mandatory indicators according to EN 15804

				Results	per	decla	ared	unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C1	C2	СЗ	C4	[
GWP-fossil	kg CO ₂ eq.	6,62E+00	2,60E-01	1,46E- 01	0	0	0	0	0	0	0	0	7,77E-03	0	1,23E- 02	(
GWP-biogenic	kg CO ₂ eq.	1,05E-02	8,88E-05	2,03E- 04	0	0	0	0	0	0	0	0	2,59E-06	0	1,05E- 05	(
GWP- luluc	kg CO ₂ eq.	2,54E-03	6,75E-05	8,21E- 05	0	0	0	0	0	0	0	0	1,95E-06	0	2,00E- 06	(
GWP- total	kg CO ₂ eq.	6,63E+00	2,60E-01	1,46E- 01	0	0	0	0	0	0	0	0	7,78E-03	0	1,23E- 02	(
ODP	kg CFC 11 eq.	3,82E-07	6,18E-08	9,59E- 09	0	0	0	0	0	0	0	0	1,86E-09	0	6,12E- 09	(
AP	mol H ⁺ eq.	3,60E-02	1,26E-03	8,74E- 04	0	0	0	0	0	0	0	0	3,28E-05	0	1,21E- 04	(
EP-freshwater	kg PO₄ eq.	4,89E-04	1,05E-05	1,81E- 05	0	0	0	0	0	0	0	0	3,10E-07	0	4,91E- 07	(
	kg P eq	1,59E-04	3,41E-06	5,90E- 06	0	0	0	0	0	0	0	0	1,01E-07	0	1,60E- 07	(
EP- marine	kg N eq.	5,28E-03	3,49E-04	1,44E- 04	0	0	0	0	0	0	0	0	9,55E-06	0	4,41E- 05	(
EP-terrestrial	mol N eq.	6,33E-02	3,90E-03	1,76E- 03	0	0	0	0	0	0	0	0	1,07E-04	0	4,92E- 04	(
РОСР	kg NMVOC eq.	3,84E-02	1,22E-03	7,13E- 04	0	0	0	0	0	0	0	0	3,40E-05	0	1,40E- 04	(
ADP- inerals&metals*	kg Sb eq.	9,43E-06	4,70E-07	2,38E- 06	0	0	0	0	0	0	0	0	1,44E-08	0	1,32E- 08	(
ADP-fossil*	MJ	1,41E+02	4,11E+0 0	2,47E+ 00	0	0	0	0	0	0	0	0	1,23E-01	0	4,08E- 01	(
WDP	m ³	1,21E+01	3,04E-02	1,39E- 01	0	0	0	0	0	0	0	0	9,14E-04	0	1,72E- 03	(
Acronyms	Warming potenti compa	Potential land al, Accumulate rtment; EP-ma	use and land d Exceedan arine = Eutrop	d use chang ce; EP-fres phication po	ge; C hwa otent	DDP ter = ial, f	= De Euti ractio	eplet roph on of	ion p ication ionuti	ooter on po rient:	ntial o otent s rea	of the straction of the	Potential bioge atospheric ozon on of nutrients r arine end compa oospheric ozone	e layer; / eaching artment;	AP = Acidifi freshwater EP-terrestri	icatio end ial =

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	eclared	l unit								
Indicator	Unit	Tot.A1-A3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP- GHG ⁶	kg CO ₂ eq.	5,23E+00	2,57E-01	1,43E-01	0	0	0	0	0	0	0	0	7,70E-03	0	1,22E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					R	esults p	oer fund	ctional	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	В1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
PERE	MJ	3,11E+00	4,49E- 02	2,84E -01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E-03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	3,11E+00	4,49E- 02	2,84E -01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E-03	0
PENRE	MJ	1,34E+02	4,11E+ 00	2,50E +00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E-01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,34E+02	4,11E+ 00	2,50E +00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E-01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m³	3,13E+00	2,19E- 01	2,35E +00	0	0	0	0	0	0	0	0	6,34E- 03	0	2,37E-02	0
Acronyms	renewa nor renewa	RE = Use of rer able primary end n-renewable prinable primary end ondary material;	ergy resour nary energ ergy resour	ces used y excludir ces used	as raw ng non- as raw	materi renew materi	ials; PE able pri ials; PE	RT = 1 mary e NRT =	Fotal us energy = Total SF = Us	se of re resour use of	enewab ces use non-rei	le prim ed as ra newabl	ary energy aw materials e primary e	resour s; PEN nergy i	ces; PENRE RM = Use o e-sources; \$	= Use of f non- SM = Use

⁶ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

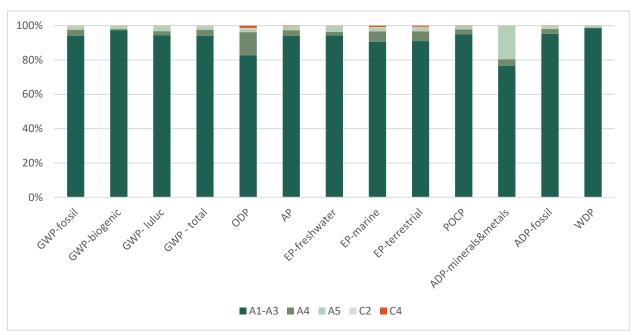
Waste production

					Re	esults p	er func	tional	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C 3	C4	D
Hazardous waste disposed	kg	1,38E-05	2,38E- 06	2,69E -06	0	0	0	0	0	0	0	0	7,14E-08	0	1,39E-07	0
Non- hazardous waste disposed	kg	3,37E-03	2,59E- 04	1,28E -03	0	0	0	0	0	0	0	0	7,80E-06	0	1,05E-05	0
Radioactive waste disposed	kg	9,08E-05	2,79E- 05	6,64E -06	0	0	0	0	0	0	0	0	8,38E-07	0	2,79E-06	0

Output flows

						Resul	ts per fur	ctional u	nit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C 1	C2	C3	C4	D
Components for re-use	kg	0	0	1,75 E- 01	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,50E- 06	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content


Results per declared unit												
BIOGENIC CARBON CONTENT	Unit	QUANTITY										
Biogenic carbon content in product	kg C	0										
Biogenic carbon content in packaging	kg C	5,30E-06										

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 92% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 3,9% and 3,5% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,3% respectively of the whole impact. The life cycle has an impact of 7,05 kg of CO2 equivalent.

Results on impact categories

Environmental Information

Since the difference in environmental impact is less than 10% DANOPOL HS 1.8 LIGHT GREY y DANOPOL + HS 1.8 DARK GREY ANTHRACITE- HS 1.8 Cool Roofing the following information is valid for the EPD results

DANOPOL HS 1.8 LIGHT GREY and DANOPOL + HS 1.8 DARK GREY ANTHRACITE-DANOPOL HS 1.8 COOL ROOFING

Potential environmental impact – mandatory indicators according to EN 15804

				Results	per	decla	ared	unit								
Indicator	Unit	Tot.A1- A3	A4	A 5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C1	C2	С3	C4	D
GWP-fossil	kg CO ₂ eq.	6,29E+00	8,54E-01	1,75E- 01	0	0	0	0	0	0	0	0	1,05E-02	0	1,67E- 02	0
GWP-biogenic	kg CO ₂ eq.	8,60E-03	3,29E-04	2,29E- 04	0	0	0	0	0	0	0	0	3,51E-06	0	1,42E- 05	0
GWP- luluc	kg CO ₂ eq.	1,97E-03	2,60E-04	9,03E- 05	0	0	0	0	0	0	0	0	2,64E-06	0	2,71E- 06	0
GWP- total	kg CO ₂ eq.	6,30E+00	8,55E-01	1,76E- 01	0	0	0	0	0	0	0	0	1,05E-02	0	1,67E- 02	0
ODP	kg CFC 11 eq.	3,05E-07	1,97E-07	1,24E- 08	0	0	0	0	0	0	0	0	2,52E-09	0	8,28E- 09	0
AP	mol H ⁺ eq.	3,62E-02	7,04E-03	1,07E- 03	0	0	0	0	0	0	0	0	4,43E-05	0	1,64E- 04	0
EP-freshwater	kg PO ₄ eq.	3,73E-04	3,60E-05	2,02E- 05	0	0	0	0	0	0	0	0	4,20E-07	0	6,65E- 07	0
	kg P eq	1,21E-04	1,17E-05	6,58E- 06	0	0	0	0	0	0	0	0	1,37E-07	0	2,17E- 07	0
EP- marine	kg N eq.	5,26E-03	1,66E-03	1,80E- 04	0	0	0	0	0	0	0	0	1,29E-05	0	5,97E- 05	0
EP-terrestrial	mol N eq.	6,28E-02	1,86E-02	2,18E- 03	0	0	0	0	0	0	0	0	1,44E-04	0	6,66E- 04	0
POCP	kg NMVOC eq.	4,11E-02	5,43E-03	8,98E- 04	0	0	0	0	0	0	0	0	4,61E-05	0	1,89E- 04	0
ADP- ninerals&metals*	kg Sb eq.	7,14E-06	1,32E-06	2,63E- 06	0	0	0	0	0	0	0	0	1,95E-08	0	1,78E- 08	0
ADP-fossil*	MJ	1,40E+02	1,33E+01	3,03E+0 0	0	0	0	0	0	0	0	0	1,67E-01	0	5,52E- 01	0
WDP	m³	1,35E+01	9,65E-02	1,76E- 01	0	0	0	0	0	0	0	0	1,24E-03	0	2,33E- 03	0
Acronyms	Warming potenti compa Eutrophic	Potential land al, Accumulat rtment; EP-ma ation potentia	I use and lan ed Exceedan arine = Eutrol I, Accumulate	d use chan- ice; EP-fresohication po ed Exceeda	ge; C hwa otent nce;	DP ter = ial, fi PO	= De Eutraction	eplet roph on of For	ion pication f nution	ooter on po rients on p	ntial of otent otent oten	of the straid in	Potential bioge atospheric ozon on of nutrients rarine end compo pospheric ozon fossil resources	ne layer; areaching artment; e; ADP-n	AP = Acidifi freshwater EP-terrestri ninerals&m	catior end ial = etals =

Potential environmental impact – additional mandatory and voluntary indicators

						Result	s per d	eclared	d unit								
Indicat	or l	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
GWP GHG	, kg	g CO ₂ eq.	6,11E+00	8,47E-01	1,68E-01	0	0	0	0	0	0	0	0	1,04E-02	0	1,65E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					R	esults p	oer fun	ctional	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	6,66E+00	1,69E- 01	3,14E -01	0	0	0	0	0	0	0	0	1,77E- 03	0	7,24E-03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	6,66E+00	1,69E- 01	3,14E -01	0	0	0	0	0	0	0	0	1,77E- 03	0	7,24E-03	0
PENRE	MJ	1,40E+02	1,33E+ 01	3,03E +00	0	0	0	0	0	0	0	0	1,67E- 01	0	5,52E-01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,40E+02	1,33E+ 01	3,03E +00	0	0	0	0	0	0	0	0	1,67E- 01	0	5,52E-01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	7,09E+00	8,47E- 01	2,60E +00	0	0	0	0	0	0	0	0	8,59E- 03	0	3,21E-02	0
Acronyms	renewa	RE = Use of rer able primary end n-renewable prin able primary end	newable pri ergy resour mary energ	mary ene ces used y excludi	as raw	mater renew	ials; PE able pr	$RT = \frac{1}{2}$ imary 6	Total us energy	se of re	newab	le prima ed as ra	ary energy w material	resoures; PEN	ces; PENRE RM = Use of	= Use f non-

water

⁷ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

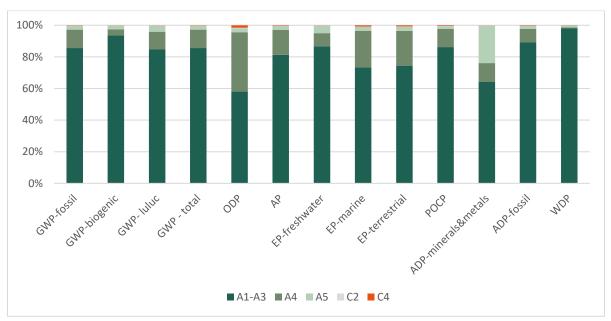
Waste production

					Re	esults p	er fund	ctional	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2,83E-05	7,73E- 06	3,01E -06	0	0	0	0	0	0	0	0	9,66E-08	0	1,89E-07	0
Non- hazardous waste disposed	kg	6,87E-01	9,36E- 01	1,72E -01	0	0	0	0	0	0	0	0	1,42E-02	0	3,87E+00	0
Radioactive waste disposed	kg	1,38E-04	8,97E- 05	8,07E -06	0	0	0	0	0	0	0	0	1,13E-06	0	3,78E-06	0

Output flows

						Resul	ts per fun	ctional u	nit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	СЗ	C4	D
Components for re-use	kg	0	0	4,25 E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,10E+0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content


Results po	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0
Biogenic carbon content in packaging	kg C	4,25E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 81,6%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 13,6% and 4,2% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,4% respectively of the whole impact. The life cycle has an impact of 7,36 kg of CO2 equivalent.

Results on impact categories

Environmental Information

DANOPOL FV 1.8 LIGHT GREY

Potential environmental impact – mandatory indicators according to EN 15804

				Results	per	decl	ared	unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C1	C2	C3	C4	ı
GWP-fossil	kg CO ₂ eq.	5,80E+00	1,13E-01	1,58E- 01	0	0	0	0	0	0	0	0	1,03E-02	0	1,64E- 02	(
GWP-biogenic	kg CO ₂ eq.	8,06E-03	3,86E-05	2,09E- 04	0	0	0	0	0	0	0	0	3,44E-06	0	1,39E- 05	
GWP- Iuluc	kg CO₂ eq.	1,77E-03	2,94E-05	7,71E- 05	0	0	0	0	0	0	0	0	2,59E-06	0	2,65E- 06	
GWP- total	kg CO ₂ eq.	5,81E+00	1,13E-01	1,59E- 01	0	0	0	0	0	0	0	0	1,03E-02	0	1,64E- 02	
ODP	kg CFC 11 eq.	2,48E-07	2,68E-08	9,18E- 09	0	0	0	0	0	0	0	0	2,47E-09	0	8,12E- 09	
АР	mol H ⁺ eq.	3,49E-02	5,57E-04	9,48E- 04	0	0	0	0	0	0	0	0	4,35E-05	0	1,61E- 04	
EP-freshwater	kg PO ₄ eq.	3,07E-04	4,54E-06	1,73E- 05	0	0	0	0	0	0	0	0	4,12E-07	0	6,52E- 07	
	kg P eq	1,00E-04	1,48E-06	5,64E- 06	0	0	0	0	0	0	0	0	1,34E-07	0	2,12E- 07	
EP- marine	kg N eq.	5,05E-03	1,53E-04	1,56E- 04	0	0	0	0	0	0	0	0	1,27E-05	0	5,85E- 05	
EP-terrestrial	mol N eq.	6,03E-02	1,71E-03	1,90E- 03	0	0	0	0	0	0	0	0	1,42E-04	0	6,53E- 04	
РОСР	kg NMVOC eq.	4,04E-02	5,33E-04	8,61E- 04	0	0	0	0	0	0	0	0	4,52E-05	0	1,85E- 04	
ADP- inerals&metals*	kg Sb eq.	5,74E-06	2,03E-07	2,36E- 06	0	0	0	0	0	0	0	0	1,92E-08	0	1,75E- 08	
ADP-fossil*	MJ	1,32E+02	1,78E+0 0	2,87E+ 00	0	0	0	0	0	0	0	0	1,64E-01	0	5,41E- 01	
WDP	m³	1,31E+01	1,31E-02	1,90E- 01	0	0	0	0	0	0	0	0	1,21E-03	0	2,28E- 03	

Acronyms

Warming Potential load use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	eclared	l unit								
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP- GHG ⁸	kg CO ₂ eq.	5,65E+00	1,12E- 01	1,55E- 01	0	0	0	0	0	0	0	0	1,02E- 02	0	1,61E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

ndicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	6,39E+00	1,95E- 02	2,84E -01	0	0	0	0	0	0	0	0	1,73E- 03	0	7,09E-03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	6,39E+00	1,95E- 02	2,84E -01	0	0	0	0	0	0	0	0	1,73E- 03	0	7,09E-03	0
PENRE	MJ	1,32E+02	1,78E+ 00	2,87E +00	0	0	0	0	0	0	0	0	1,64E- 01	0	5,41E-01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,32E+02	1,78E+ 00	2,87E +00	0	0	0	0	0	0	0	0	1,64E- 01	0	5,41E-01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m³	6,20E+00	9,54E- 02	2,34E +00	0	0	0	0	0	0	0	0	8,42E- 03	0	3,15E-02	0

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; very resources; per = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; per = Use of non-renewable primary energy resources used as raw materials; per = Use of non-renewable primary energy resources; sm = Use of secondary material; resources; sm = Use of non-renewable primary energy re-sources; sm = Use of secondary material; resources; resourc

⁸ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

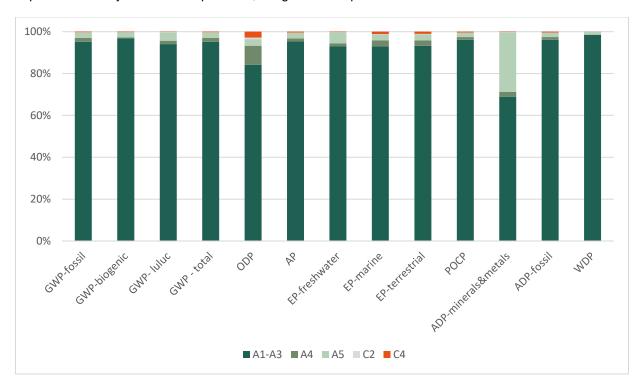
Waste production

					Re	esults p	er func	tional ı	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2,36E-05	1,03E- 06	2,61E -06	0	0	0	0	0	0	0	0	9,47E-08	0	1,85E-07	0
Non- hazardous waste disposed	kg	6,64E-01	1,47E- 01	1,48E -01	0	0	0	0	0	0	0	0	1,39E-02	0	3,79E+00	0
Radioactive waste disposed	kg	1,31E-04	1,21E- 05	6,57E -06	0	0	0	0	0	0	0	0	1,11E-06	0	3,70E-06	0

Output flows

						Resul	ts per fun	ctional ur	nit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	ВЗ	B4	В5	В6	В7	C1	C2	СЗ	C4	D
Components for re-use	kg	0	0	4,25 E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,10E+0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content


Results p	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0
Biogenic carbon content in packaging	kg C	4,25E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 92,2%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 2,2% and 4,8% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,2% and 0,6% respectively of the whole impact. The life cycle has an impact of 6,11 kg of CO2 equivalent.

Results on impact categories

Environmental Information DANOPOL + HSF 1.8 DARK GREY ANTHRACITE

Potential environmental impact – mandatory indicators according to EN 15804

				Results	per	decl	ared	unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C1	C2	C3	C4	
GWP-fossil	kg CO ₂ eq.	5,12E+00	3,02E-01	1,59E- 01	0	0	0	0	0	0	0	0	1,06E-02	0	1,69E- 02	C
GWP-biogenic	kg CO ₂ eq.	5,23E-03	1,03E-04	2,08E- 04	0	0	0	0	0	0	0	0	3,55E-06	0	1,44E- 05	C
GWP- luluc	kg CO ₂ eq.	1,23E-03	7,83E-05	8,21E- 05	0	0	0	0	0	0	0	0	2,67E-06	0	2,74E- 06	(
GWP- total	kg CO ₂ eq.	5,13E+00	3,02E-01	1,60E- 01	0	0	0	0	0	0	0	0	1,06E-02	0	1,69E- 02	(
ODP	kg CFC 11 eq.	2,01E-07	7,17E-08	1,13E- 08	0	0	0	0	0	0	0	0	2,55E-09	0	8,38E- 09	(
АР	mol H ⁺ eq.	2,60E-02	1,47E-03	9,69E- 04	0	0	0	0	0	0	0	0	4,49E-05	0	1,66E- 04	(
EP-freshwater	kg PO₄³- eq.	1,66E-04	1,21E-05	1,84E- 05	0	0	0	0	0	0	0	0	4,25E-07	0	6,72E- 07	(
	kg P eq	5,42E-05	3,95E-06	5,98E- 06	0	0	0	0	0	0	0	0	1,38E-07	0	2,19E- 07	(
EP- marine	kg N eq.	4,35E-03	4,05E-04	1,64E- 04	0	0	0	0	0	0	0	0	1,31E-05	0	6,04E- 05	(
EP-terrestrial	mol N eq.	5,16E-02	4,53E-03	1,99E- 03	0	0	0	0	0	0	0	0	1,46E-04	0	6,74E- 04	(
POCP	kg NMVOC eq.	3,74E-02	1,42E-03	8,16E- 04	0	0	0	0	0	0	0	0	4,66E-05	0	1,91E- 04	(
ADP- inerals&metals*	kg Sb eq.	2,30E-06	5,45E-07	2,39E- 06	0	0	0	0	0	0	0	0	1,98E-08	0	1,80E- 08	(
ADP-fossil*	MJ	1,26E+02	4,77E+00	2,76E+0 0	0	0	0	0	0	0	0	0	1,69E-01	0	5,58E- 01	(
WDP	m ³	1,27E+01	3,52E-02	1,60E- 01	0	0	0	0	0	0	0	0	1,25E-03	0	2,36E- 03	(
Acronyms	Warming potentia compar Eutrophic	Potential land al, Accumulate tment; EP-ma ation potential	use and langed Exceedangline = Eutropy, Accumulate and the internal control of	d use chang ce; EP-fres phication po ed Exceeda fossil resou	ge; C hwa otent nce; rces	DDP ter = ial, fi PO(; AD	= De Euti raction CP = P-fos	eplet oph on of For ssil =	ion pication f nution mation Abi	ooter on portients on positions	ntial otent s rea oten depl	of the stratial, fracti aching matial of tropetion for	p Potential biog atospheric ozor on of nutrients arine end comp pospheric ozon fossil resources	ne layer; reaching artment; e; ADP-r	AP = Acidif freshwater EP-terrestr minerals&m	icatio end ial = etals

PAGE 43/49

Potential environmental impact – additional mandatory and voluntary indicators

						Result	s per d	eclare	d unit								
Indica	ator	Unit	Tot.A1-A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
GW GH	'P- G ⁹	kg CO ₂ eq.	4,98E+00	2,99E-01	1,56E-01	0	0	0	0	0	0	0	0	1,05E-02	0	1,65E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					R	esults p	er fun	ctional	unit							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	2,86E+00	5,21E- 02	2,86 E-01	0	0	0	0	0	0	0	0	1,79E- 03	0	7,32E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	2,86E+00	5,21E- 02	2,86 E-01	0	0	0	0	0	0	0	0	1,79E- 03	0	7,32E- 03	0
PENRE	MJ	1,26E+02	4,77E+ 00	2,76 E+00	0	0	0	0	0	0	0	0	1,69E- 01	0	5,58E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,26E+02	4,77E+ 00	2,76 E+00	0	0	0	0	0	0	0	0	1,69E- 01	0	5,58E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	3,03E+00	2,55E- 01	2,36 E+00	0	0	0	0	0	0	0	0	8,68E- 03	0	3,25E- 02	0
Acronyms	renewa no renewa	RE = Use of rer able primary end n-renewable prinable primary end ondary material	ergy resour mary energ ergy resour	ces used y excludii ces used	as raw ng non as raw	mater renew mater	ials; PE able pr ials; PE	RT = 1 imary e NRT =	Fotal us energy = Total	se of re resource use of	newab ces use non-re	le prim ed as ra newabl	ary energy w materials e primary e	resourd s; PENI nergy r	ces; PENRE RM = Use of e-sources; \$	= Use f non- SM = U

water

 $^{^{9}}$ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

Results per functional unit																
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	1,32E-05	2,76E- 06	2,74 E-06	0	0	0	0	0	0	0	0	9,77E-08	0	1,91E-07	0
Non- hazardous waste disposed	kg	3,47E-01	3,94E- 01	1,77 E-01	0	0	0	0	0	0	0	0	1,43E-02	0	3,91E+00	0
Radioactive waste disposed	kg	8,43E-05	3,24E- 05	7,36 E-06	0	0	0	0	0	0	0	0	1,15E-06	0	3,82E-06	0

Output flows

Results per functional unit																
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	6,09 E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	6,50E+0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results per declared unit							
BIOGENIC CARBON CONTENT	Unit	QUANTITY					
Biogenic carbon content in product	kg C	0					
Biogenic carbon content in packaging	kg C	4,25E-06					


Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 86,0% of the whole impact,

identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 6,72% and 6,86% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,2% and 0,7% respectively of the whole impact. The life cycle has an impact of 5,62 kg of CO2 equivalent.

Results on impact categories

Information related to Sector EPD

This is not a sector EPD.

Differences versus previous versions

- Impacts due to substitution are not considered.
- The main difference is the change of name of some references and the incorporation of new products as shown in the following table.

Thickness	Previous version	Current version			
	DANOPOL 1.2 HS and 1.2 H.S Dark grey	DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE.			
1.2 mm		DANOPOL HS 1.2 COOL ROOFING			
	DANOPOL 1.2 FV and FV NI DANOPOL 1.2 HS Blanco	DANOPOL FV 1.2 LIGHT GREY.			
	DANOPOL 1.2 DW DANOPOL HS 1.5 FV and H.S 1.5 Dark grey	DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE. DANOPOL HS 1.5 COOL			
45	DANOPOL 1.5 FV and 1.5 FV	ROOFING DANOPOL FV 1.5 LIGHT GREY			
1.5 mm	NI	and DANOPOL + FV 1.5 DARK GREY ANTHRACITE DANOPOL HSF 1.5 LIGHT			
		GREY			
		DANOPOL + HSF 1.5 DARK GREY ANTHRACITE			
	DANOPOL 1.8 HS	DANOPOL HS 1.8 LIGHT GREY and DANOPOL + HS 1.8 DARK GREY ANTHRACITE			
1.8 mm		DANOPOL HS 1.8 COOL ROOFING			
	DANOPOL 1.8 FV	DANOPOL FV 1.8 LIGHT GREY and DANOPOL + FV 1.8 DARK GREY ANTHRACITE			
		DANOPOL + HSF 1.8 DARK GREY ANTHRACITE			

References

- General Programme Instructions of the International EPD® System. Version 3.01.
- PCR 2019:14 Construction products version 1.1
- CEN (2019): EN 15804:2012+A2:2019, Sustainability of construction works Environmental product declarations Core rules for product category of construction products.
- ISO 14040:2006: Environmental Management-Life Cycle Assessment-Principles and framework
- ISO 14044:2006: Environmental Management-Life Cycle Assessment-Requirements and guidelines.
- ISO 14025:2006: Environmental labels and declarations-Type III Environmental Declarations-Principles and procedures.
- ISO 14020:2000: Environmental labels and declarations General principles.
- LCA DANOSA

VERIFICATION STATEMENT CERTIFICATE

CERTIFICADO DE DECLARACIÓN DE VERIFICACIÓN

Certificate No. / Certificado nº: EPD00401

TECNALIA R&I CERTIFICACION S.L., confirms that independent third-party verification has been conducted of the Environmental Product Declaration (EPD) on behalf of:

TECNALIA R&I CERTIFICACION S.L., confirma que se ha realizado verificación de tercera parte independiente de la Declaración Ambiental de Producto (DAP) en nombre de:

DERIVADOS ASFALTICOS NORMALIZADOS, S.A. (DANOSA) Pol. Ind. Sector, 9 19290 - FONTANAR (Guadalajara) SPAIN

for the following product(s):
para el siguiente(s) producto(s):

DANOPOL PVC WATERPROOFING SHEET: DANOPOL HS and DANOPOL FV. LÁMINAS IMPERMEABILIZANTES DE PVC DANOPOL: DANOPOL HS y DANOPOL FV.

with registration number **S-P-00691** in the International EPD® System (www.environdec.com). con número de registro **S-P-00691** en el Sistema International EPD® (www.environdec.com).

it's in conformity with: es conforme con:

- ISO 14025:2010 Environmental labels and declarations. Type III environmental declarations.
- EN 15804:2012+A2:2019 Sustainability of construction works. Environmental product declarations Core rules for the product category of construction products.
- General Programme Instructions for the International EPD® System v.3.01.
- PCR 2019:14 Construction products v1.11.
- CPC Code: 547 Building completion and finishing services.

Issued date / Fecha de emisión:18/05/2015Update date / Fecha de actualización:27/07/2021Valid until / Válido hasta:25/07/2026Serial Nº / Nº Serie:EPD0040101-E

This certificate is not valid without its related EPD.

El presente certificado está sujeto a modificaciones, suspensiones temporales y retiradas por TECNALIA R&I CERTIFICACION.

his certificate is subject to modifications, temporary suspensions and withdrawals by TECNALIA R&I CERTIFICACION.

El estado de vigencia del certificado puede confirmarse mediante consulta en www.tecnaliacertificacion.com.

Carlos Nazabal Alsua

Manager

